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Abstract—Multiangle images are acquired over roughly the same
earth surface fromdifferent angles, and accurate image registration
is a key prerequisite for their application. In this paper, we propose
a robust registration method by rank minimization (RRRM) for
multiangle hyper/multispectral remotely sensed imagery (MA-HSI-
MSI). First, the low-rank structure of theMA-HSI-MSI is exploited
and utilized as the registration constraint, thus recasting the image
registration problem as searching for an optimal set of transforma-
tions, such that the matrix of the transformed images can reach its
minimum rank. Second, a patch-based registration scheme is
adopted to solve the problem of inconsistent geometric distortion
over the entire image, taking the homography model as the local
transformation. An iterative convex optimization algorithm is then
used to solve the rankminimization-based image registrationmodel
for each image patch. Finally, all the transformed patches are used
to synthesize the final registration image. The experimental results
demonstrate that the proposed low-rank registrationmethodworks
effectively for CHRIS/Proba imagery and WorldView-2 imagery.

Index Terms—Hyper/multispectral, image registration, multiangle,
rank minimization.

I. INTRODUCTION

M ULTIANGLE remote sensing sensors retrieve the
directional reflectance properties of the earth’s surface,

which open up new applications in the retrieval of physical scene
characteristics, as well as quantitative improvements in classifi-
cation accuracy through image fusion and resolution enhance-
ment [1]–[3]. Many recently launched imaging systems are
equipped with multiangle capabilities, including the Multispec-
tral Thermal Imager (MTI), the Multiangle Imaging Spectro-
radiometer (MISR), the Along Track Scanning Radiometers
(ATSR-1, ATSR-2, and AATSR), the Compact High Resolution
Imaging Spectrometer (CHRIS) onboard the Project for On-
Board Autonomy (Proba) satellite [4], [5], and WorldView-2.

However, for all of the successful applications of multiangle
imagery, accurate registration of the multiple-view images,
which at times are also multitemporal, is a prerequisite [6].

Generally speaking, image registration can be divided into three
steps: 1) preparation of a sufficient number of control points (CPs);
2) estimation of the mapping function between the images to be
registered using the CPs; and 3) resampling of the images for
alignment with the reference system, using the mapping function
[7].Of these three steps, thefirst step is themost important because
it directly determines how well the transformation can be estimat-
ed by the next two steps. One of the important applications
when detecting CPs is to establish correspondences or to measure
the similarity among different images. Therefore, the detected
points should be stable or invariant under transformations incurred
by changes in viewpoint or illumination. In the past decades,
numerous invariant features and descriptors have been proposed,
studied, compared, and tuned [8]. Among the feature descriptors,
scale-invariant feature transform (SIFT) has been widely used,
and is, to a large extent, invariant to changes in rotation, scale, and
illumination [9]. Nevertheless, if the images are taken from very
different viewpoints, SIFT may fail to establish enough reliable
correspondences, and its affine-invariant version (Affine-SIFT)
was proposed to obtain more correspondences, but suffers from
low accuracy [10].

However, these traditional feature descriptors cannot work
well when applied to multiangle remote sensing images. For
imageswith large view angles, the existence of resolution change
and blurring makes the precise location of CPs difficult. In
addition, local geometric distortion caused by topographic
effects and/or platform instability means that no global rigid
transformation models are appropriate, which forms another
challenge for the multiangle image registration [11]. Due to
these two problems, only a few methods can achieve promising
registration accuracy, especially for large view angle images. In
[12], an effective method using a physical sensor model is
elaborated; however, the availability of a DEM, as well as
reliablemetadata on sensor geometry, is required. Unfortunately,
this cannot always be obtained, especially for certain imaging
systems [4]. For example, for CHRIS/Proba imagery, reliable
determination of satellite-target geometry poses some difficul-
ties. In addition, the method proposed in [12] can only be
described as semi-automatic, as manual CP collection needs to
be undertaken in the case where the area of overlap between
the input and orthorectified images is limited. Recently, a
two-step nonrigid automatic registration scheme for multiangle
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CHRIS/Proba satellite images was proposed in [13]. In the first
step, CPs are selected in a preregistration process based on the
SIFT features. In the second step, the preliminary registered
image is then divided into chips of pixels, and each chip
is matched with a corresponding chip in the reference image,
using normalized cross-correlation (NCC). Selected SIFT and
NCC CPs are then used to define a nonrigid thin-plate-spline
model. The two challenges mentioned above are considered in
this method, but it may not work when no SIFTCPs can be found
in the first step [14], which may often be the case for large view
angle image registration. Furthermore, the two consecutive
resampling procedures may cause a change of pixel profile,
leading to a loss of image details.

The repeatability of feature extraction and the correctness of
feature matching remain issues in the presence of severe clutter
and challenging viewing conditions [15]. Viewpoint changes
considerably lower the probability of detecting consistent fea-
tures in different images (features that capture the same physical
surface but may appear different due to viewpoint change) [16].
Large view angle images are often affected by illumination
difference from the nadir image, which leads to an insufficient
number of extracted features. From this perspective, making use
of feature descriptors cannot achieve satisfactory results in
multiangle remote sensing imagery registration. Furthermore,
with the feature points-based image registration method, only
one remotely sensed angle image can be registered with respect
to the reference nadir image in a single registration procedure.
When all the different angle images are required in the applica-
tion, the image registrations for each angle image must be
performed separately, which may cause error transfer or
accumulation.

In recent years, with the rapid development of matrix rank-
related optimization techniques, low-rank structure has become
an effective constraint for various data registration tasks
[17]–[19], including face images, seismogram data, and so on,
and has achieved impressive performances. In [17], Peng et al.
discussed the low-rank structure of a batch of correlated natural
images, and formulated the batch image alignment problem as
the search for a set of transformations that minimizes the rank of
the transformed images. In addition, Wang et al. [18] performed
automaticmisalignment correction of seismogramswith the low-
rank structure of the seismogram data. Wu et al. [19] studied the
problem of online alignment of a newly arrived image to
previously well-aligned images by identifying the low-rank
component of the well-aligned image basis. Unlike the tradi-
tional feature-based image registration methods, the success of
these rank-based data alignment methods can mainly be attrib-
uted to the identification of the low-rank structure of the pro-
cessed data as the effective constraint. Therefore, for multiangle
hyper/multispectral imagery (MA-HSI-MSI), the main task is to
exploit the low-rank structure of theMA-HSI-MSI and apply it in
the formulation of the rank minimization-based MA-HSI-MSI
registration model. To the best of our knowledge, in the literature
to date, there have not been any registration methods developed
for remote sensing images which use the low-rank structure.

In view of this, we propose a robust registration method by
rank minimization (RRRM) for MA-HSI-MSI. The method is
fully automatic and does not require any prior knowledge of the

sensor geometry. First, the low-rank structure of the MA-HSI-
MSI is exploited and utilized as the image feature for the image
registration,which enables us to build a rankminimization-based
MA-HSI-MSI registration model that is solved by an iterative
convex optimization method. Second, a patch-based registration
scheme, which treats each local image patch with a rigid trans-
formation model, is utilized to tackle the problem of inconsis-
tency of the entire image transformation model. The main
contribution of this paper is that all the bands of the multiangle
images participate in the image registration procedure at the same
time, which improves the image registration performance and the
robustness to stripe noise and occlusions. The experimental
results with CHRIS/Proba and WorldView-2 images confirm
the effectiveness of the proposed MA-HSI-MSI registration
method.

The structure of the paper is as follows. In Section II, we
explain the low-rank structure of MA-HSI-MSI. In Section III,
we formulate the image registration problem as a matrix rank
minimization problem and we describe the iterative convex
optimization algorithm.We then summarize the whole flowchart
of the MA-HSI-MSI registration scheme. In Section IV, the
experimental results with CHRIS/Proba and WorldView-2
images, and the corresponding experimental analysis, are pro-
vided. Finally, Section V concludes the paper with a discussion
of the different directions of our future work.

II. THE LOW-RANK STRUCTURE OF MA-HSI-MSI

MA-HSI-MSI can provide us with sufficient measurements of
the same surface, from both the angular and the spectral per-
spective. Generally speaking, there is a high correlation between
these measurements, which allows for the low-rank property of
MA-HSI-MSI.

First, we exploit the low-rank property of single-angle hyper-
spectral imagery (HSI) from the qualitative and quantitative
perspectives, respectively. Qualitatively, high correlations exist
for HSI, both spatially and spectrally, which means that efficient
compression algorithms can be designed to reduce the huge size
and allow for convenient data storage and transfer. Furthermore,
the principal component analysis (PCA) transformation can
reduce the dimension of HSI data to a few principal components
in practical applications [20], [21] such as classification, target
detection, and so on. All these facts reveal one important truth:
that the data structure of HSI is low rank.

The low-rank structure of a clean hyperspectral image can also
be explored quantitatively from the perspective of the linear
mixing model [22]–[24]. By lexicographical rearrangement, a
hyperspectral image with bands can be represented as a 2-D
matrix R , where represents the number of image
pixels. Here, the th column denotes the lexicographically
reshaped th band of the hyperspectral image. There are high
correlations between the hyperspectral pixels (rows of ), as
each pixel can be decomposed as the combination of several
endmembers. Assuming that the observation region is composed
of different endmembers, let R be the matrix whose
columns contain the spectral signatures of these materials along
frequency bands, and let R be the matrix containing

the fraction of the corresponding endmembers, i.e., indicates
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the percentage of the th endmember in pixel . Therefore, the
whole HSI matrix can be factorized into , which is
known as the linear mixture model [25]. As the value of
is usually relatively small, i.e., , the rank of is
bounded, which suggests the low-rank structure of .

All the angle images of the same earth surface can be denoted
as R , where denotes the number of
angles. Each angle image has a size of m pixels and bands.
Initially, these angle images are not well registered. Let
represent the reference nadir image, and the others, ,
are the input images to be registered. Clearly, all the bands of the
same angle image will suffer from the same distortion, so
groups of transformation parameters for all the angle images
need to be estimated. If we find the optimal transformations

among them, they can be transformed into the
coordinate system of the reference image, and become well
registered. The well-registered MA-HSI-MSI can then be
expressed as

R

As shown in [17], if are of some convex
Lambertian object under varying illumination and viewpoints,
then a rank-9 approximation suffices. Therefore, even for multi-
spectral images, with the help of the multiangle capability,
sufficient measurements can be obtained. Therefore, the
well-registered MA-HSI-MSI should be low rank. Image regis-
tration can be viewed as the identification of this low-rank
structure.

III. ROBUST IMAGE REGISTRATION BY RANK MINIMIZATION

In this section, we first formulate the image registration as the
search for a set of transformations that minimizes the rank of the
transformed images. An iterative convex optimization method is
then introduced in detail to solve the transformation parameters.
Finally, we provide the flowchart for the MA-HSI-MSI
registration.

A. Modeling Registration as Domain Transformation

Domain transformations are usually used for geometric cor-
rection and registration. In the work of Ma et al. [26], affine
transformation was adopted to describe the image deformation.
In fact, homography transformation is more suitable for view-
point changes [8], so we choose homography transformation to
describe the multiangle image geometric distortion.

Suppose the point in the image to be registered is denoted by
, then we use to represent the corresponding

point in the reference image. The homography transformation
can be derived by the following equa-

tion [27]:

Due to the scale variability of the homography matrix, is
normalized to 1, and then only eight parameters are independent

of each other. We now take all the angle images and let
denote the th band of the th

angle image. Here, we select the nadir image as the reference
image, and our goal is to make the other angle images,

, registered to the reference one. In other words, we
need to find groups of transformations and each
group will have eight degrees of freedom. Therefore, the trans-
formed images will bewell aligned at the
pixel level or, equivalently, the matrix

R

is low rank,where denotes all themultiangle observations, and
is a general term for all the transformation parameters. The

multiangle image registration can therefore be reduced to the
following optimization problem:

Thus, the registration of theMA-HSI-MSI can be transformed
to solve the set of transformations by optimizing the rank
minimization problem (4).

However, the low-rank structure of the registered images can
be easily violated due to the presence of noise, partial corrup-
tions, and occlusions, which are caused by the multiangle
imaging. Since these errors usually occupy only a small amount
of the whole image, we can model them as sparse errors whose
non-zero entries can have arbitrarily large magnitudes [28].

Let represent the large and sparse errors in the
image , then we can modify (4) to the following:

where the counts the number of non-zero entries
in the sparse error matrix , and is a constant that represents the
maximum number of corrupted pixels. The Lagrangian form of
this problem is more convenient to solve

where > is a weighting parameter that trades off the rank of
the solution versus the sparsity of the error.

Here, we only consider sparse large-magnitude errors in
images in (6). In fact, real images are unavoidably corrupted
by additive Gaussian noise in all the pixels. Fortunately, it has
been proved that the sparse and low-rank matrix decomposition
is stable to additive Gaussian noise of a small magnitude, in
addition to sparse errors [29]. Thus, the optimization model can
be modified as follows:

where > is the noise level.

B. Solution by Iterative Convex Optimization

The optimization problem shown in (7) is not, however,
directly tractable, because both the rank and the norm are
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nonconvex and discontinuous, and the constraint is highly
nonlinear with respect to . In this section, we introduce an
effective practical solution to this problem, building on recent
advances in algorithms for robust matrix rank minimization.

It has been shown that for the problem of recovering low-rank
matrices from sparse errors [30], the rank function rank( )
and the norm can be replaced by the matrix nuclear
norm and the norm . Here,

, i.e., the sum of the singular values, and
. Thus, we get the following optimization

problem:

We now get a convex objective function, but the constraint is
nonlinear with respect to the homography transformation ,
which makes the whole optimization problem not convex.When
the change of is small, we can approximate the constraint by
linearizing the current estimate of . We now identify the
transformation R , and we have
groups to estimate, with each group having eight parameters.
For an initial value , when the change

R is small enough,we can use theTaylor expansion,
i.e., " , where

� � � R is the Jacobian of the th angle

image, with respect to the transformation parameters , and
" denotes the standard basis forR . The convex optimization

problem with respect to the unknowns , , and now
becomes

"

The linearization procedure only holds locally, so we should
solve (8) by repeatedly linearizing about our current estimate of

and iteratively performing a sequence of convex programs of
the form of (9). The implementation details of the proposed
image registration algorithm for MA-HSI-MSI are shown in
Algorithm 1. The algorithm stops when the relative change of the
cost function between two consecutive iterations is less than the
predetermined threshold. Details of the convergence analysis can
be found in [31]–[33].

Themain computational cost inAlgorithm1 at each iteration is
the third step, which solves the linearized convex optimization
problem (9). This part can be efficiently solved by a first-order
method, the Augmented Lagrange Multiplier (ALM) algorithm.
The basic idea of the ALM algorithm is to search for a saddle
point of the augmented Lagrangian function. The augmented
Lagrangian function is formulated as

where " ,
R is a Lagrange multiplier matrix, denotes the

matrix inner product, i.e., , is a positive

scalar, and represents the Frobenius norm. If we choose the
appropriate matrix and a sufficiently large constant , the
augmented Lagrangian function has the same minimizer as the
original constrained optimization problem. The ALM algorithm
iteratively estimates both the Lagrangemultiplier and the optimal
solution by iteratively minimizing the augmented Lagrangian
function

The first step is difficult to solve directly. One method is to
minimize the Lagrangian function by adopting an alternating
scheme, optimizing one parameter while fixing the others

To spell out the solutions, the operator for the scalars is defined
as follows:

where . When applied to the vector or matrix, the operator
acts element-wise. Therefore, we can rewrite the problem as

"

"

"

where svd( ) denotes the singular value decomposition operator,
and denotes the Moore-Penrose pseudo-inverse of .

C. The Flowchart of the RRRM Method for MA-HSI-MSI

Considering the issue of local distortion in multiangle images,
a patch-based registration scheme is chosen. This scheme treats
each local image patch with a rigid transformation model, but
globally the model is nonrigid to tackle the problem of inconsis-
tency of the entire image transformation model. Both the input
images and the reference image are first divided into patcheswith
a certain degree of overlap. Each patch is stacked as a vector to
find the local transformation parameters that make the matrix
rank obtain its minimum, and then all the registered patches are
synthesized to obtain the whole registered image. Suppose the
image has a size of pixels, then we choose as the
size of each patch andmove the patch across the reference image,
with an overlap of pixels between each adjacent patch. Thus, the
proposed method performs as the following Algorithm 2.
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Algorithm 1

Input: Multiangle images R the initial
homography transformation parameters for each
angle image, and the weighting parameter > .

Initialization:

1) Normalize images in order to rule
out the trivial solutions such as zooming in on a single dark pixel
or a dark region in the image.

2) Iteration number .

While not converged Do

1) Compute the Jacobian matrices w.r.t. transformation :

�

�

�
�

2) Warp the images:

3) Solve the linearized convex optimization by an iterative
process:

"

4) Update transformations: and the itera-
tion number

End While

Output: Solution , and the whole change of with
respect to : .

Algorithm 2

Input: A dataset of MA-HSI-MSI, including one nadir image
and other angle images.

Initialization

1) Use a traditional feature extraction operator, Harris, for
example, to get the initial homography transformation para-
meters for each angle image.

2) Both the nadir image and the angle images are divided into
patches with respect to the initial homography transformation,
with a certain degree of overlap.

3) Each nadir patch and its corresponding angle image patches
are viewed as an image patch set.

Main steps

1) For each patch set, the nadir patch and the other angle patches
are referred to as R .

2) Solve the transformation parameters among
via Algorithm 1.

3)Warp the input patches according to the solution sought out in
step 2.

4) Turn to the next set of patches and repeat the above three steps
until all the sets are dealt with.

5) Synthesize all the registered patches into the whole image.

Output: In order to obtain spatially consistent results, over-
lapping parts of patches are fused by averaging, and a full image
is obtained.

IV. EXPERIMENTS AND ANALYSIS

A. Experiment Data and Quantitative Evaluation Factors

In the experimental section, CHRIS/Proba and WorldView-2
images are chosen to represent the multiangle hyperspectral and
multispectral images, respectively. First, we make a brief intro-
duction to these two types of images.

1) CHRIS/Proba Imagery: The spaceborne ESA-mission
CHRIS/Proba provides hyperspectral and multidirectional data
of selected targets spread all over the world. CHRIS/Proba
provides multiple observations of the same scene at five
different angles ( , , , , and ). In addi-
tion, each angle image has multiple bands, and the number of
bands differs in differentmodes. For example, forMode 3, which
is mainly used for land observation, each angle image has 18
bands, together forming 90 bands for five angles, which reveals
the multiangle and hyperspectral property of the CHRIS/Proba
imagery. Detailed information about CHRIS/Proba imagery is
provided in Table I [32].

To save space, we select one dataset of images from Mode 2,
Mode 3, and Mode 5, respectively, as representatives to conduct
the experiments. According to their corresponding areas, they are
termed CHRIS_FY, CHRIS_UK, and CHRIS_BA. Detailed
descriptions of the utilized images are provided in Table II. The
five selected CHRIS/Proba images are shown in Figs. 1–3,
respectively. All the CHRIS/Proba images were preprocessed
with the open-source BEAM CHRIS-Box software [34], which
includes two important procedures: 1) noise reduction, i.e., the
replacement of missing data and destriping; and 2) atmospheric
correction, i.e., the retrieval of the surface reflectance from
remotely sensed imagery by removing the atmospheric effects
[35]. In fact, noise or other distortions may still exist after the
preprocessing, e.g., some bands cannot be filtered completely.
Some of these situations can be seen in Fig. 4, where band 2 of
CHRIS_FY still suffers from severe stripe noise, and there are
some occlusions in band 3 of CHRIS_BA, due to the topography
variation.

2) WorldView-2 Imagery:WorldView-2 was launched in late
2009, and provides commercially available panchromatic
imagery at 0.5 m resolution, and 8-band multispectral
imagery at 1.8 m resolution. The eight bands of the multi-
spectral image refer to coastal, blue, green, yellow, red, red
edge, near-IR1, and near-IR2. The sensor acquires different
angle images at , , and in the forward
direction, and and in the backward direction.
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Here, the WorldView-2 image data which was provided by
DigitalGlobe for the purpose of the 2011 GRSS Data Fusion
Contest is utilized to validate the performance of the proposed
RRRMmethod. This data covers Santos Dumont Airport of Rio
de Janeiro city, Brazil. A subregion composed of
pixels, as shown in Fig. 5, was cropped as the study area and is
termed WV-2. Detailed information about the utilized image set
is provided in Table II.

3) Quantitative Evaluation Factors: In order to evaluate the
accuracy of the image registration, we use the correlation
coefficient (CC) and mutual information (MI) indexes to
conduct the quantitative assessment. Both CC and MI can
reflect the degree of similarity between two images, and are

popular evaluation indexes used in the quality assessment of
image registration.

Let and denote the th pixel value in the reference and
input images, and represent the mean values of the whole

TABLE II
DETAILED INFORMATION ABOUT THE UTILIZED IMAGES

Fig. 1. Band 4 of CHRIS_FY (Mode 2) MA-HSI. From (a) to (e): fly-zenith
angles are , , , , and .

Fig. 2. Band 1 of CHRIS_UK (Mode 3) MA-HSI. From (a) to (e): fly-zenith
angles are , , , , and .

Fig. 3. Band 3 of CHRIS_BA (Mode 5) MA-HSI. From (a) to (e): fly-zenith
angles are , , , , and .

TABLE I
INFORMATION ABOUT CHRIS/PROBA IMAGERY
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images, and is the number of pixels in the image, then the CC
index can be expressed as

where the closer the index is to 1, the higher the registration
accuracy is.

For two images and the MI index can be defined as

The interpretation of this form is that it measures the distance
between the joint distribution of the images’ gray values
and the joint distribution in the case of independence of the
images . It is a measure of dependence between two
images. The assumption is that there is maximal dependence
between the gray values of the images when they are correctly
aligned. Misregistration will result in a decrease in the measure.

B. Registration Results

In this section, we illustrate the effectiveness of the proposed
registration scheme based on the RRRM method. For the
CHRIS/Proba images, the 0 angle image is chosen as the
reference image, and the remaining four angle images are
selected as the sensed ones, i.e., the images to be registered. As
for the WorldView-2 images, the image that is closest to the
nadir, i.e., 81.4 in the forward direction, is regarded as the
reference, and the others are the sensed images.

1) Visual Evaluation: In order to show the details of the
registration results, we take a patch as an example in each set
of experiments. In order to save space, we only give the
registration results of CHRIS_FY for the CHRIS/Proba case
andWV-2 for theWorldView-2 case. In theCHRIS_FY case, the
size of each patch is pixels, an overlap of 50 pixels is
chosen, and we set the weighting parameter as . In the
WV-2 case, the same patch size and overlap size is chosen, and
the weighting parameter is set as .

Fig. 6 shows the patches from CHRIS_FY, where the first row
is the nadir patches, i.e. the reference, and the second to the last are
the angle patches to be registered. From Fig. 6, it can be seen that
some bands are seriously polluted by stripe noise and some pixels
are in occlusion. In this situation, the proposed method models
these as sparse- and large-magnitude errors, which is represented
by in (6). Consequently, we can still register all the angle
patches effectively, as shown in Fig. 7. It is noted that the image
coverage areas of the sensed and reference patches are not exactly
the same, so the size of the transformed image changes. This leads
to the registered patches shown in Fig. 7 having some parts
missing, e.g., thefirst, third, and the last row,which can be seen in
the top or bottom of the patches. In addition, some registered
angle patches contain all the surface area of the reference patch,
e.g., in the second row of Fig. 7, no missing part appears. The
registration results of theWV-2 image dataset are shown in Fig. 8,
and detailed regions of the registration results are illustrated in
Fig. 9. From the perspective of the visual effect, the patches of the
large-angle views are well aligned with the nadir one, despite the
existence of noise and occlusions. To better show the registration
accuracy, in the CHRIS_FY case, we overlay band 4 taken from
the three viewing angles after registration with the proposed
method to generate a false color composite image, as shown in
Fig. 10. The public portions of all the five transformed angle
images are cropped out to overlay the display. The red component
in the composite refers to the nadir patch, and the other two
components refer to two transformed angle patches. It is apparent
that no artifacts exist over the entire image, which shows the high
quality of our registration results.

Furthermore, we superpose the registered angle image patch
with the nadir one, and the two patches of the CHRIS_UK image
are stitched together. To highlight the effect of the registration,
we select two bands with large differences in pixel intensity. In
Fig. 11, the central transition area is obtained by averaging the
two patches. To save space, only one large view angle ( )
patch and one small view angle ( ) registered patch are
provided. Similarly, we can see that the result keeps the consis-
tency in geometry, which verifies the effectiveness of the regis-
tration method.

Fig. 5. Band 1 ofWV-2MA-HSI. From (a) to (e): in the forward direction;
44.7 in the forward direction; 56.0 in the forward direction; 59.8 in the
backward direction; and 44.6 in the backward direction.

Fig. 4. Some bands polluted by stripe noise or occlusions after preprocessing.
(a) Band 2 of CHRIS_FY. (b) Band 3 of CHRIS_BA.
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To confirm the superiority of the proposed RRRMmethod, we
use the image registration method proposed in [13], a method
based on visual inspection, the traditional SIFT method [9], and
the ImReg method [36] as comparative methods. Here, we refer
to the method in [13] as , and the method based on
visual inspection is referred to as MANUAL. In the MANUAL
method, 20 manually selected CPs are used as the ground truth,
and a third-order polynomial transformation is adopted. Through
our experiments, the third-order polynomial model has proved to
be a bettermodel than other global transformationmodels such as
the projective and second-order polynomial models. The experi-
mental results of the MANUAL method change with different
sets of CPs, so we perform this experiment three times and select
the best result as the result of MANUAL. In the traditional

SIFT method, we use the SIFT operator to extract feature
points, outliers are eliminated by RANdom SAmple Consensus
(RANSAC) [37], and we then adopt a cubic polynomial
transformation.

The experimental results show that the SIFT and ImReg
methods appear to perform worse than the other three methods.
Due to the space constraint, only the experimental results of the
RRRM, , and MANUAL methods are shown in
Fig. 12, from the first column to the third column, respectively,
and the last column shows the reference image. From the image
details shown in the red square box, it can be observed that the

method performs worse than the other two meth-
ods. This happens mainly because the thin-plate-spline model
which the method adopts is highly dependent on

Fig. 6. Patches fromCHRIS_FY. From the first row to the last: 0 , , , , and . Each row shows four different bands, from the first column to the last:
bands 1, 2, 5, and 7.
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the accuracy and amount of CPs, which is usually difficult to
obtain for multiangle images, especially large view angle images
[38]. In the experimental results of CHRIS_UK, it can be seen

that some detailed structural information is lost, which severely
reduces the registration quality. From the visual comparison, no
obvious differences can be found between the proposed method

Fig. 7. Transformed patches fromCHRIS_FY. From the first row to the last: , , , and . Each row shows four different bands, from the first column
to the last: bands 1, 2, 5, and 7.

Fig. 8. Registration results for theWV-2 image dataset. (a) Reference patch from
band 1. (b)–(e) Four registered angle patches from band 1.

Fig. 9. Detailed regions of the WorldView-2 image registration result.
(a) Reference image. (d)–(e) Other four angle images.
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and the MANUAL method. From all the above-mentioned
comparisons, it can be concluded that the proposed RRRM
method outperforms and can achieve almost the
same effect as the MANUAL method.

2) Quantitative Evaluation: The CC and MI metrics are used
to evaluate the quality of the registration images, and the
quantitative evaluation results are shown in Tables III and IV.
With the use of the patch-based registration scheme, we obtain a
series of registered patches. Each patch can then be compared to
the reference patch to obtain a corresponding CC value, and we
compute the average of these values to represent the accuracy of
the entire image.

For each row, the best evaluation result for each image is
marked in bold font, and the second-best result is underlined. It is
apparent that the traditional SIFTmethod and the ImReg method
perform worse than the other three methods. What is even worse

is that sometimes these methods cannot work because no appro-
priate CP can be found to calculate the transformation, aswith the

angle image and the angle image of CHRIS_BA. In
other words, these two methods are not suitable for multiangle
image registration and are not comparable with the other three
methods. As for the RRRM, , and MANUAL
methods, it can be observed that the quantitative evaluation
results are consistent with the visual comparisons. The

method performs badly, especially when applied
to the large view angle images. When images are taken from a
large view angle, resolution change and blurring make it difficult

Fig. 11. Superposition of the registered angle image patch with the nadir one.
(a) Band 10 patch from the nadir image and the band 1 patch from the angle
image. (b)Band10patch from the nadir image and the band1 patch from the
angle image.

Fig. 10. Overlay of the band 4 images taken from the three viewing angles after
registration in the CHRIS_FY case. From (a) to (d): the composite of 0 , ,
and ; 0 , , and ; 0 , , and ; and 0 , , and .

Fig. 12. Details of the registration results by the different methods. From the first
row to the last: CHRIS_FY, CHRIS_UK, CHRIS_BA, and WV-2, respectively.
From the first column to the last: RRRM, , MANUAL, and the
reference image, respectively.

TABLE III
COMPARISON OF CC AMONG DIFFERENT METHODS
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to extract enough CPs of high quality, leading to the relatively
low registration accuracy. In addition, only works
well in areas with little variation in topography, and this require-
ment cannot always be met in actual situations. For example,
there is obvious elevation variation in the CHRIS_FY image.

Comparing the RRRMmethod with theMANUALmethod, it
can be seen that RRRM generally achieves better results in all
four experiments, which proves that the proposed RRRM meth-
od works well for MA-HSI-MSI, without manual intervention.
Viewpoint changes and varying illumination also result in some
weakness in theMANUAL registration procedure, leading to the
result being unstable. CP selection remains a challenge due to the
phenomenon of resolution change and blurring. For example, in
the CHRIS_UK experiment, good results are achieved for the
small view angle ( and ) images, but unsatisfactory
results are obtained for the large ones ( and ). Never-
theless, this disadvantage can be overcome in the proposed
RRRM method because the feature extraction step of the tradi-
tional registration methods is cleverly avoided. Meanwhile, no
such obvious difference exists between the large-angle views and
the small-angle views, because they are treated in a unified
framework. It should also bementioned that the proposedRRRM
method is robust with regard to noise and occlusions, which often
exist within multiangle imagery, even after preprocessing.

It is possible to handle all the angle images and all the bands in
a single RRRM procedure, which makes the solved set of
transformations for the four angle images globally optimal.
However, in the comparative methods, only one or three
bands/components of good visual quality are used to select the
CPs and then registered with their optimal transformation, which
lowers the performance and robustness of these methods [39]. In
addition, with the traditional methods, only one angle image is
dealt with during each registration procedure, with respect to the
reference image, and the registration result is only optimal for the
image pair. However, this will obviously not be optimal for all
the angle images, because of the pairwise error transfer or
accumulation. From this perspective, the RRRM registration
method outperforms the other methods because all five angle
images are used at the same time.

3) Patch and Overlap Size Analysis: As mentioned in
Section I, local distortion exists in multiangle images, which

means that a global transformation model is not appropriate
for the whole image. If the patch size is large, the homography
transformation will also not be suitable. On the other hand, if the
patch size is relatively small, the number of image patches and
the time cost will increase accordingly. Similarly, if the size of
the overlap is large, the time cost will again be high.

Here, we use CHRIS/Proba images to analyze the effect of
patch and overlap size. A series of experiments is conductedwith
the patch size varying from 100 to 300 pixels, with a step of 50
pixels, and the overlap size varying from 25% to 65% of the
corresponding patch size, with a step of 20%. We take the
angle image as an example to analyze the effect of the size of the
patch and the size of the overlap on the registration result.
Table V shows the registration accuracy with different patch
sizes and overlap sizes, in terms of CC and MI. The quantitative
evaluation results for each multiangle image dataset are given in
each column of the table, in which the optimal results are labeled
in bold and the next seven suboptimal results are underlined. To
clearly illustrate the sensitivity of the RRRMmethodwith regard
to the patch size and overlap size, we show the change curve of
the CC index with regard to different patch sizes and overlap
sizes in Fig. 13.

From Table V, it can be clearly observed that a reasonable
patch size falls in the range of [100, [250]. From Fig. 13, it can be
seen that the registration accuracy first begins to increase as the
patch size increases. Then, when the patch size reaches a certain
value, the registration accuracy begins to gradually decline. For
the overlap size, it can be generally observed that the registration
accuracy reaches its optimal when the overlap size is set as 65%
of the patch size. Furthermore, it can be seen that the effect of the
overlap size on the image registration accuracy is relatively
small. Considering all these factors, the size of the image patch
and the size of the overlap are set as 200 and 50 in this paper,
respectively.

4) Parameter Analysis: The weighting parameter trades off
the rank of the solution versus the sparsity of the gross errors.
The theoretical analysis in [25] suggests that the weighting
parameter should be of the form , where is a
constant, typically set to around unity, and is the number
of pixels in each patch.

TABLE IV
COMPARISON OF MI AMONG DIFFERENT METHODS

TABLE V
COMPARISON OF THE REGISTRATION ACCURACY WITH DIFFERENT PATCH SIZES

AND OVERLAP SIZES
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To acquire the optimal value of the weighting parameter, we
conduct a series of experiments using the CHRIS/Proba images,
with a range of [0.1, 1.5] and a step size of 0.1. Fig. 14 shows the
sensitivity of the weighting parameter for different image
datasets.

It can be seen that the optimal value of theweighting parameter
is closely related to the image content and is notfixed for different
image datasets. It is therefore a difficult task to give an optimal
value or an adaptive determination method for the weighting
parameter , the value of which is obtained empirically in this
paper. For CHRIS_UK, the magnitude of the CC value change is
much larger than for the other two datasets over the parameter
range of [0.1, 1.5]. As increases from 0.1, the CC value first
rises. Then, when the growth reaches a certain level, it arrives at
the maximum and begins to show a downward trend, which
happens in all three experiments. The optimal value of for the
CHRIS_FY, CHRIS_UK, and CHRIS_BA images is about 0.7,
1.0, and 0.8, respectively. As the main focus of this paper is the
formation of the proposed RRRM image registration method for
MA-HSI-MSI, the adaptive selection of weighting parameter is
out of the scope of this paper, but will be investigated in our
future work. Through a number of experiments, it can be
observed that when the value of the parameter is within the
range of [0.6, 1.2], the registration performance of the proposed
RRRM method is relatively stable. Therefore, the range of
[0.6, 1.2] is recommended for the selection of parameter .
Furthermore, the registration accuracy of large view angle
images is almost always lower than for small-angle images.
However, when the optimal weighting parameter is chosen, the
registration accuracy difference between large view angle
images and small-angle images is relatively small.

5) Time Cost and Convergence Analysis: The time cost of the
proposed RRRM image registration method is investigated in
this section. We calculate the time cost of the patch set for each
multiangle CHRIS/Proba image dataset, with different selections
of the weighting parameter . To save space, only the time costs

of five different values are listed in Table VI, and the last
column denotes the average time cost, with varying from 0.1 to
1.5. The experiments were conducted inMATLABR2011b on a
3.07 GHz Intel Core i3 machine with 6.0 GB RAM. Overall, it
can be observed that the time cost falls in an acceptable range.
Furthermore, it is also reasonable to believe that with the rapid
development in computer hardware and computation techniques,
the time cost will soon no longer be an issue.

The convergence property of the proposed RRRM image
registrationmethod is also investigated. The convergence curves

Fig. 14. Sensitivity analysis for the weighting parameter . (a) Corresponding
change in the CC measure when varies for CHRIS_FY. (b) Corresponding
change in the CC measure when varies for CHRIS_UK. (c) Corresponding
change in the CC measure when varies for CHRIS_BA.

TABLE VI
TIMES COST FOR EACH DATASET WITH DIFFERENT VALUES OF

Fig. 13. Sensitivity analysis of the patch size and overlap size. (a) Change curve
of the CC measure when the patch size or overlap size varies for CHRIS_FY.
(b) Change curve of the CCmeasure when the patch size or overlap size varies for
CHRIS_UK. (c) Change curve of the CCmeasure when the patch size or overlap
size varies for CHRIS_BA.
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of the three multiangle CHRIS/Proba image datasets, CHRIS_
FY, CHRIS_UK, and CHRIS_BA, are illustrated in Fig. 15. It
can be observed that the objective function value of (10) de-
creases with the iterations and then finally achieves a stable level,
which suggests the convergence of the proposed RRRMmethod.
It should also be noted that the images have been normalized in
the initialization step ofAlgorithm 1,which leads to the objective
function value being relatively low.

Furthermore, the sensitivity analysis of the proposed RRRM
method with respect to the initialization is given here to deepen
the understanding of its convergence.We conduct an experiment
using the CHRIS_FY image set. In the experiment, the initiali-
zation is obtained using four different feature extraction opera-
tors, i.e., Harris, SUSAN, SIFT, and SURF. The sensitivity of the
RRRM algorithm to the initialization is analyzed in terms of the
decrease of objective function value and the image registration
accuracy measures.

From Table VII, it can be found that the initial objective
function value varies in a small range and the final value reaches
almost the same level, which shows that the almost identical
registration accuracy is obtained. The CC and MI values of the
registration images under different initializations are given in
Table VIII. Clearly, the variation of registration accuracy is
consistent with the decrease of objective function value. There-
fore, it can be concluded that different initializations would lead
to almost the same registration results and the registration
accuracy stays in a reasonable range as long as the initialization
is relatively suitable.

6) Analysis of the Effect of Noise: This section investigates the
effect of noise on the proposed RRRM image registration

method. The CHRIS_UK image dataset is chosen to conduct
the simulation experiment because it can be viewed as almost
clean, without any noise. In this simulated experiment, two kinds
of noise are added to the CHRIS_UK image. The first kind is
zero-mean Gaussian noise, with the SNR value of each band
varying from 0 to 20 dB, and the second type is impulse noise,
with the percentage of contaminated part varying from 0% to
20%. The quantitative experimental results of the simulation
images with both Gaussian and impulse noise are shown in
Tables IX and X, respectively. From the two tables, it can be
clearly observed that the performance of the
method drops with the increase of noise level. When noise
exists, the method is severely affected or even
do not work, whereas the RRRM method can model all these
obstacles as sparse gross errors and suppress their negative effect
in the registration process. Therefore, the superiority of the
RRRM model stands evidently in the presence of noise.

V. CONCLUSION

Multiangle imagery provides directional reflectance proper-
ties of the earth’s surface; however, its registration is faced with
challenges due to the large view angles. This paper proposes an

Fig. 15. Convergence analysis of the proposed RRRM method.

TABLE VII
DECREASE OF THE OBJECTIVE FUNCTION VALUE

TABLE VIII
COMPARISONS OF CC AND MI INDEXES UNDER DIFFERENT INITIALIZATIONS

TABLE IX
COMPARISON OF RRRM AND METHODS UNDER DIFFERENT GAUSSIAN

NOISE LEVELS

TABLE X
COMPARISON OF RRRM AND METHODS UNDER DIFFERENT IMPULSE

NOISE LEVELS
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RRRM for MA-HSI-MSI. By exploiting the low-rank structure
of the MA-HSI-MSI, the proposed RRRM method cleverly
avoids the deficiency of multiangle image feature extraction. In
addition, we adopt a patch-based registration strategy to tackle
the problem of local geometric distortion. Specifically, the entire
images are divided into several patches with a certain overlap,
and we find the optimal homography transformation to represent
the local distortion. All the bands of the multiangle images
participate in a single registration procedure, which makes the
proposed method robust with regard to stripes and occlusions.
The proposed RRRMmethod was tested on three CHRIS/Proba
image datasets and a WorldView-2 dataset. Overall, the exten-
sive experimental results clearly show that the proposed RRRM
method achieves a superior registration performance.

However, there is still some room for improvement of the
proposedmethod. For example, adaptive selection of the weight-
ing parameter needs further investigation. Another interesting
issue is the type of transformation model: parametric smooth
transformation could be used to handle more challenging earth
surfaces, instead of homography transformation.
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